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Motivation for Current Work

« NASA's Commercial Supersonic Technology (CST) Project Goals:
— Design a combustor that produces EINOx emissions in the 5-15
range at Supersonic Cruise conditions
— High temperature combustor liners, Composition controlled fuels

- NASA Glenn Research Center's N+3 Project Focus:

Design/Evaluate Lean-Burn/Lean-Dome combustors in partnership
with OEMs and injector manufacturers to meet program goals

« Current work: CFD analysis of 29 and 3@ generation Lean Direct
Injection (LDI) flame-tube array for CST Cruise conditions using
National Combustion Code (OpenNCC)




vasa N+2 (LDI-2) vs N+3 (LDI-3) Flametube

N2 (S N+3 (LDI-3]

- To accommodate requirements of N+3 combustors as compared to N+2
(smaller core size, lower EINOX) .
- Denser packaging of injectors at combustor dome face
« Redesign of Main elements (pre-filming injector)
* Redesign of Pilot elements air-flow passages
- Trade low-power operability provided by recess of ‘center cup’ (N+2)
for lower NOx (N+3)¢




NQ%Q LDI-2/LDI-3 Pilot/Main Injector Hardware

Integrat uel Stem for
Multi-ElemﬂLDl-S Module

AB = AirBlast
S = Simplex
Pre=ming
Syace /.
Injector
Simplex Injector
Pre-Filming i 5 cn .
fpiector Woodward FST pre-filming injector for Mains.
l, - Fuel injected via plain jet orifice into prefiimer.
' - Axial bladed swirlers for air flow

Pilot fueled by simplex injector. Circumferential air-flow

OpenNCC analysis provided design-optimization of main/pilot element airflow passages 4
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7 N+3 Injector Array Setup
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19-Element Module Assembly

Flametube Setup for NASA GRC's CE-5 Rig

Aft looking Upstream
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N%‘? Physical Models for OpenNCC

Finite volume, 4-stage Runge-Kutta explicit scheme, 2"9 order time-accurate
Time-Filtered Navier-Stokes (TFNS) solver (Liu, Wey AIAA 2014-3569)

Two-equation, cubic k-¢ model with variable Cy and dynamic wall functions with
pressure gradient effects (Shih, NASA TM 2000-209936 )

Reduced-kinetics, finite-rate chemistry. Jet-A fuel modeled as surrogate mixture
of decane (73%), benzene(18%), hexane(9%) (14 species, 18 steps)

Adiabatic flame temperature, flame-speed, ignition-delay matched with
shock-tube data (Kundu, AIAA Paper 2014-3662)

Lagrangian spray-modeling for liquid fuel droplets (prescribed droplet
distribution, injection velocity and direction) (Raju, NASA CR-2012-217294)

Turbulence-chemistry interaction modeling: Joint Scalar Monte-Carlo PDF solver
(Raju, AIAA Paper 2004-0327)




NASA R ANS/TFNS Non-Reacting Flow

P3=1.585MPa, T3=922K, Dp = 5%

Run 100,000 steps at CFL=0.75 (<1% mass-flow imbalance convergence)

Fix Ptot, Ttot at Inflow; Fix pressure at Outflow

Compute ACd from CFD prediction of mass flow rate at each inflow boundary.
- aggregate of 12 mains (N+2), 16 mains (N+3)
« single pilot (N+2), three pilots (N+3)
« pilot cooling and dome cooling (N+3)

OpenNCC prediction target is for total ACq4 to be within 10% of experimental data
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"'(’*\%“ Step 1: Non-Reacfting Flow CFDx=

- What are the flow-field differences between the N+2 and N+3
designs at supersonic cruise conditions?

N+2 (Pilot Centerline)

|
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Step 2: Reacting-Flow OpenNCC

- Use OpenNCC CFD analysis to evaluate mixing, performance and
emissions at supersonic cruise condifions (NASA cycle)

- What are the aerodynamics, flame shapes and emissions
characteristics of the two current designs (N+2 and N+3) ¢

- What is the impact of varying the liner cooling flow rate on NOXx
emissionse




“CFD Setup for CST Cruise (N+2/N+3)

- All Pilots and Mains are fueled at the same equivalence
ratio of 0.496 (Fuel/Air ratio = 0.034)
- P3 = 1.585MPa (230psi), Tz = 922K (1200F), Dp = 5%

- Typical Subsonic Conditions, for which N+2/N+3 hardware was
optimized: Pz =265psi, T3 = 811K, Dp = 3%




N@s}c_\, Reacting Flow - Temperature (K)
’ Flametube Centerline: N+2 vs N+3 D

N+2 (Pilot Centerline) N+3

a

|
725. 1016. 1306. 1597. 1888, 2l7‘0‘ 2449. 2760.

Pilots for N+3 show high temperature ‘hot streaks’ in combustor downstream of
the dome region 12




N@y\, Reacting Flow - NO mass-fraction(*1e6) g
| Flametube Centerline; N+2 vs N+3 5
N+2 (Pilot Centerline)

 ———
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Pilot dominates NOx production in both configurations
N+3 Pilof regions have lower NOx than N+2 Pilot.
Overall NOx is similar for N+2 and N+3 13




NS}%A Exit Plane Temperature and
' NO mass-fraction(*1eé) - N+3

NO mass-fraction (*1e6)




N%“. CFD vs Experimen’r Comparison
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Summary and Recommendations

« CFD analysis of a N+2 and N+3 flametube arrays performed with

OpenNCC for Supersonic Cruise conditions

* EINOx predictions for the N+2 and N+3 conditions are fairly similar to

each other

* CFD predictions of EINOx for the N+3 configuration match

experimental data to within 15% accuracy

* Future work will focus on approaches to reduce cruise EINOx to the
5-15 range. The proposed strategies are:

* Design of high-temperature combustion liners (reduced cooling air)
« Compostion controlled fuels (hydro-treated, alkane-only)

* Redesign injectors optimized for subsonic goals to optimize
emissions for supersonics goals
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